« Quand j'entends le mot vivre, je sors mon revolver ou du poison. » (Luc Pulflop)
mercredi 22 avril 2020
Classification des catastrophes
En topologie différentielle, la théorie des catastrophes est une branche de la théorie des bifurcations qui a pour but de construire le modèle dynamique continu le plus simple pouvant engendrer une morphologie donnée empiriquement. Le terme de catastrophe désigne le lieu où une fonction change brusquement de forme. Le résultat le plus célèbre de cette théorie est qu'il n'existe que sept formes de catastrophes possibles pour toutes les fonctions possédant au plus quatre paramètres d'entrée. Avec cinq paramètres, il existe quatre formes de catastrophes supplémentaires. Mais là où les choses se gâtent, c'est quand il y a six paramètres ou plus, comme c'est le cas pour le Dasein. Alors, le nombre de catastrophes possibles devient littéralement infini car des « modules » apparaissent.
(Włodzisław Szczur, Mathématique du néant)
Inscription à :
Publier les commentaires (Atom)
Aucun commentaire:
Enregistrer un commentaire